Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer
نویسنده
چکیده
1. Quick Review of Elliptic Curves 2 2. Elliptic Curves over C 4 3. Elliptic Curves over Local Fields 6 4. Elliptic Curves over Number Fields 12 5. Elliptic Curves with Complex Multiplication 15 6. Descent 22 7. Elliptic Units 27 8. Euler Systems 37 9. Bounding Ideal Class Groups 43 10. The Theorem of Coates and Wiles 47 11. Iwasawa Theory and the “Main Conjecture” 50 12. Computing the Selmer Group 61
منابع مشابه
On the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملHeegner points, Stark-Heegner points, and values of L-series
Elliptic curves over Q are equipped with a systematic collection of Heegner points arising from the theory of complex multiplication and defined over abelian extensions of imaginary quadratic fields. These points are the key to the most decisive progress in the last decades on the Birch and Swinnerton-Dyer conjecture: an essentially complete proof for elliptic curves over Q of analytic rank ≤ 1...
متن کاملComputational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves
We describe theorems and computational methods for verifying the Birch and Swinnerton-Dyer conjectural formula for specific elliptic curves over Q of analytic ranks 0 and 1. We apply our techniques to show that if E is a non-CM elliptic curve over Q of conductor ≤ 1000 and rank 0 or 1, then the Birch and Swinnerton-Dyer conjectural formula for the leading coefficient of the L-series is true for...
متن کاملThe Arithmetic of Elliptic Curves with Complex Multiplication
Introduction. Although it has occupied a central place in number theory for almost a century, the arithmetic of elliptic curves is still today a subject which is rich in conjectures, but sparse in definitive theorems. In this lecture, I will only discuss one main topic in the arithmetic of elliptic curves, namely the conjecture of Birch and Swinnerton-Dyer. We briefly recall how this conjecture...
متن کاملON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE
We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.
متن کامل